Chapter 8

NOBLE GASES

M.F.A. Dove

8.1	THE ELEMENTS	504
8.2	KRYPTON(II) AND XENON(II)	505
8.3	XENON(IV) AND (VI)	505
REFERENCES		505

8.1 THE ELEMENTS

The adsorption of Xe on Pt supported on NaY-zeolite at 25°C has been investigated by ¹²⁹Xe n.m.r. spectroscopy. ¹ The solubility of the noble gases in 1,4-dioxan at 10lkPa over the temperature range 285-303K has been reported. ² Liquid Xe is a useful solvent for e.s.r. studies of reactive free radicals, e.g. reactions (1) and (2): the g-factors of many types of radical are not the same in Xe as in normal solvents. ³ Cook and Roberts did

$$Bu^{t}OOBu^{t}$$
 $\overset{hv}{+}$ $2Bu^{t}O\cdot$...(1)

$$Bu^{t}o \cdot + CH_{2} = CH - CH_{3} + Bu^{t}oH + CH_{2} = CH - CH_{2}$$
 ...(2)

not detect any Xe-based radicals. The UV photolysis of $Cr(CO)_6$ in liquid Xe/N₂ mixtures at 183K has been shown by i.r. spectroscopy to generate the mixed carbonyl dinitrogen species, $Cr(CO)_{6-x}(N_2)_x$, x=1 to 5. The compound with x=1 was found to be unstable thermally in liquid Xe at $-35^{\circ}C$, whereas the x=5 compound is unstable even at $-90^{\circ}C$. The presence of xenon in the first coordination sphere of $Cr(CO)_5$ has been reported for the first time by Turner and coworkers. It was produced by the photolysis of $Cr(CO)_6$ in liquified Xe or Kr doped with Xe and detected by i.r. spectroscopy. The half-life of $[Cr(CO)_5 Xe]$ in such solutions is ca. 2s at $-98^{\circ}C$.

8.2 KRYPTON(II) AND XENON(II)

Fluorination of methionine or methionylglycine derivatives with XeF₂ in MeCN occurs exclusively at the methylthic position, in 70-90% yield under carefully controlled conditions. The synthesis of $^{15}\text{N-enriched}$ Xe[N(SO₂F)₂]₂ has enabled Schumacher and Schrobilgen to characterise this compound by both ^{15}N and ^{129}Xe n.m.r. spectroscopy. Three possible isotopic isomers were identified and the presence of two equivalent Xe-N bonds inferred. The dissociation of F[XeN(SO₂F)₂]₂ $^{+}\text{AsF}_{6}^{-}$ in solution was also investigated and the formation of Xe[N(SO₂F)₂]₂ in SO₂ClF established. Thermal analysis studies of XeF₂ have shown that above 350°C disproportionation occurs to Xe and XeF₄. The reaction of XeF₂ with Cs₃M^{III}F₆, M = Ce, Pr. Tb, Nd, Dy or Er, has been studied thermogravimetrically. The formation of Cs₃M^{IV}F₇ occurred in the temperature range 115°C (for Ce) to 382°C (for Nd).

The X-ray photoelectron spectra of core levels of KrF_2 , XeF_4 and XeF_6 have been obtained. Satellites on the low kinetic energy side of the core levels have been assigned to monopole-allowed shake-up transitions by using $\mathrm{Xa}\text{-SW}$ hole state and atomic model calculations. On $\mathrm{An}\ \mathrm{Xa}\text{-SW}$ calculation on the KrF_2 ground state gives good agreement with the experimental valence-bond energies.

8.3 XENON(IV) AND (VI)

Photolysis of XeF $_{6}$ is said to cause complete dissociation to XeF, and F2. 11

REFERENCES

- 1 T.Ito, L.-C. de Menorval, J. Chem. Phys., 30(1983)573.
- M.A.Gallardo, J.S.Urieta and C.G.Losa, J. Chim. Phys., 30(1983)621.
- 3 M.D.Cook and B.P.Roberts, J. Chem. Soc., Chem. Commun., (1983) 264.
- J.J.Turner, M.B.Simpson, M.Poliakoff, W.B.Maier and M.A. Graham, Inorg. Chem., 22(1983)911.
- 5 M.B.Simpson, M.Poliakoff, J.J.Turner, W.B.Maier and J.G.McLaughlin, J. Chem. Soc., Chem. Commun., (1983) 1355.
- 6 A.F.Janzen, P.M.C.Wang and A.E.Lemire, J. Fluorine Chem., 22(1983)557.
- 7 G.A.Schumacher and G.J.Schrobilgen, Inorg. Chem., 22(1983)2178.
- 8 Yu.M.Kiselev and S.A.Goryachenko, Russ. J. Inorg. Chem., 28(1983)9.
- 9 M.Kiselev, S.A.Goryachenkov and L.I.Martynenko, Russ. J. Inorg. Chem., 28(1983)651.
- 10 G.M.Bancroft, D.J.Bristow, J.S.Tse, and G.J.Schrobilgen, Inorg. Chem., 22(1983)2673.
- 11 K.Lutar and J.Slivnik, J. Fluorine Chem., 23(1983)430.